Austempered Ductile Iron

Ian Mallett
Austempered Ducile Iron (ADI)

- Self-healing
- Stronger/weight than Aluminum
- Tougher than “steel”!
- Cheap(ish)

- But we need some background to understand it . . .
Topics

• Part I: Introduction
 – Iron
 – Steel

• Part II: Steels (Steel Microstructures)
 – Thermal treatments

• Part III: Cast Iron

• Part IV: Austempered Ductile Iron
Part I: Introduction
Iron vs. Steel

The phase diagram illustrates the differences and transitions between iron and steel.

- **Austenite** (γ) is the high-temperature phase.
- **Ferrite** (α) is the low-temperature phase.
- **Delta iron** (δ) is another phase at intermediate conditions.

Key points include:
- **Austenite in liquid**
- **Primary austenite begins to solidify**
- **CM begins to solidify**

The regions highlight:
- **Austenite solid solution of carbon in gamma iron**
- **Pearlite and ferrite**
- **Pearlite and Cementite**
- **Cementite, pearlite and transformed ledeburite**

Temperature scale is in °F and °C.

Iron vs. Steel transitions through various phases, with different compositions and properties.
Iron vs. Steel (Simpler)
Iron vs. Steel (Simpler)
Iron vs. Steel (Simpler)

Iron \(+ \) Carbon \(\approx \) Steel

Fe \(\text{Iron} \) 26 55.845

C \(\text{Carbon} \) 6 12.011

Steel
Part II: Steels (Steel Microstructure)
Why Does Carbon Make Steel Strong?

- “Metallurgical grit”
- Prevents Iron atoms from moving past each other
- Makes steel harder but more brittle than pure Iron.

Diagram:
- STEEL
- $\bullet = \text{carbon atom}$
- $\bigcirc = \text{iron atom}$
Iron/Steel Microstructures

- Austenite (A, γ, γ-Fe) (FCC)
- Allotriomorph Ferrite (F, α, δ-Fe) (BCC)
- Idiomorph Ferrite (F, α_I) (BCC)
- Pearlite (P)
- Widmanstätten Ferrite (α_w)
- Bainite (B)
 - Upper Bainite (α_b)
 - Lower Bainite (α_{lb})
- Acicular Ferrite (α_a)
- Martensite (M, α') (BCT) (tetragonal)
- Cementite (θ)
- Ledeburite
- Sphereoidite
- Ausferrite
- ...
Iron/Steel Microstructures

- Different iron/carbon microstructures have different properties

- One object can have many different microstructures!

- The game is: choose nice combinations of them
Iron/Steel Microstructures

- Thermal treatments change microstructures
Part III: Cast Iron
Cast Iron

- Cast iron: steel with too much Carbon
Cast Iron

• (Some of the) Carbon comes out of solution.
• Forms graphite “inclusions” of pure weakness surrounded by steel “matrix”.

[Image of cast iron microstructure with labeled steel matrix and graphite inclusions]
Cast Iron

- Graphite makes cast iron machinable and tough, but softer and weaker.

- Pure steels are (sometimes) considered “better”, but they're also more expensive
Cast Iron

- Gray iron
- White iron
- Malleable iron
 - Black-heart malleable iron
 - White-heat malleable iron
 - Pearlitic malleable iron
- Ductile iron
- Compacted graphite iron
- ...
Cast Iron

- Gray iron
- White iron
- Malleable iron
 - Black-heart malleable iron
 - White-heat malleable iron
 - Pearlite malleable iron
- Ductile iron
- Compacted graphite iron
- ...
Part IV: Austempered Ductile Iron
Austempered Ductile Iron Algorithm

Temperature (°C)

900

Austenitizing
90 min

380

Austempering
90 min

Time (min)
Step 0

- Make casting from ductile iron
 (== cast iron + a pinch of Mg and Si)
Step 1

- Immerse casting in liquid salt (basically corrosive lava)
Step 2

- The steel matrix changes to Austenite
Step 3

- Quench (rapidly cool) (avoids pearlite)
- Can use lower-temperature salt, hot oil, or molten Pb or Sn.
Step 4

- Leave it there to austemper (an isothermal transition)
- Matrix becomes ausferrite — acicular ferrite and austenite stabilized with about 2% carbon
Step 5

- Let it cool off
Step 6: Done!

- Hooray!
- Enjoy your new superalloyed part!
Questions
Cited

- http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/examples/FeC.gif
- http://vanlandw.com/images/rage.png
- http://www.periodictable.com/Samples/006.x4/s9s.JPG
- https://upload.wikimedia.org/wikipedia/commons/1/10/Ductile_Iron.png
- https://upload.wikimedia.org/wikipedia/commons/a/aa/IronAlfa%26IronGamma.svg
- http://www.hardmaterials.de/assets/images/fig_15.gif
- http://www.threeplanes.net/images/Tetragonal-body-centered.png
- https://s-media-cache-ak0.pinimg.com/736x/24/59/0b/24590b7296e571115408c3aeb65441a.jpg
- https://s-media-cache-ak0.pinimg.com/736x/4e/75/96/4e7596a1446e53cdcf5ae7be42dc12.jpg
- https://s-media-cache-ak0.pinimg.com/236x/77/41/95/77419583fdd13f0769cea0bb0b511577.jpg
- http://manufacturingscience.asmedigitalcollection.asme.org/data/Journals/JMSEFK/28529/021013_1_f3.jpeg
- http://ecce.colorado.edu/~bart/book/fcc.gif
- http://www.globalspec.com/ImageRepository/LearnMore/201112/saltbath-treatmentsf14264c46429426e96ec0183b1de6378.png
- http://www.fvhit.com/assets/images/Austemper.jpg
- http://www.ainsmag.co.uk/newsimages/wa253/5114wa1h-furnace-furniture.jpg
- http://thdick.co.uk/images/uploads/DSC00194.jpg
- http://www.iron-foundries.co.uk/rc_images/adi.jpg
- http://www.ductile.org/didata/Section4/Figures/gearsp42.JPG
- http://me.ahpنقاط3/488-90/92/9250/GLM3500Z/posters/iron-mills-at-night-pittsburgh-pa.jpg (modified)
- http://www.descote.com.cn/sites/default/files/Mat-Microstructure%20of%20steel%20alloy.jpg

... (continued)
References

- http://cml.postech.ac.kr/2008/Steel_Microstructure/SM2.html
Iron vs. Steel

- Toughness: Ability to absorb energy
- Hardness: Resistance to deformation
- Strength: Resistance to force

<table>
<thead>
<tr>
<th></th>
<th>Iron</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toughness</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Hardness</td>
<td>C+</td>
<td>A+</td>
</tr>
<tr>
<td>Strength</td>
<td>B-</td>
<td>A-</td>
</tr>
</tbody>
</table>